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Motivation

* We consider a set of materials (SrFeO;, BaFeO,, LaFeO,,BiFeO;) , which
are limiting for solid solutions employed as the most presently efficient
cathode materials in solid oxide fuel cells (SOFCs) : Ba, :Sr, ;Fe Co, 05,
La, ¢Sty ,Fe,C0,,05, and a new recently proposed Bi, ,Sr, Fe,Co, ,O;

(A. Wedig, PhD thesis, MPI for Solid State Research, Stuttgart, Germany, 2013,
http://elib.uni-stuttgart.de/opus/frontdoor.php?source opus=8622&la=de ).

 What conditions (partial pressure and temperature of oxygen gas) are
required to insure existence and stability of a target material with respect to
decomposition to simple oxides and metals?

 What are conditions allowing to produce a material?
* How to estimate such conditions from results of ab initio calculations?

e Determine region of chemical potentials of components where
considered material exists and there is a sense to analyze surface structures,
their stability, formation of defects, and reactions at crystal surfaces.


http://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=8622&la=de

Computational details

CRYSTALO9Y code: Local Gaussian type basis set

Stuttgart ECP at Bi, La, Sr, Ba; all-electron and Stuttgart ECP at
Fe; all-electron at O.

Basis sets optimized in forms:

— s411p411d411 (with ECP at Fe, La),

— s411p411d411f11 (with ECP at La),

— s411p411d11 (with ECP at Sr, Ba),

— s4411p411d411 (with ECP at Bi),

— s86411p6411d411 (all-electron at Fe),
— s8sp411d11 (all-electron at O).

Hybrid density functional: B3PW
8x8x8 Monkhorst-Pack net



Some restrictions

Important approximation: G, ;;~E.i4

Usually good , but fails when soft modes are present.

In AFeO, (A=Sr, Ba, Bi, La) the chemical potentials are connected by:

M+ Hge T %ﬂoz = GAFeo3 ~ EAFeo3

leaving only two of the chemical potentials as independent
variables. We choose : ., and u,,, which are common for all
considered materials.



Deviations of chemical potentials

Deviations of chemical potentials from reference states:

A,u - Ebulk Variations of chemical potentials for atoms A

A A A calculated with respect to chemical potential
of atom A in metallic phase A metal stable at
standard conditions

1 Variations of chemical
Ap (T,p)=p (T,p )_5 Eo.. potentials for oxygen atoms are
calculated with respect to
oxygen atom in O, molecule:



Dependence on temperature and pressure

T & p dependencies of p are usually weak in solids, but strong in gases!

UA(T,p) — neglected,
Uo(T,p) defines (T,p) dependence of surface Gibbs free energies.

Ideal gas approximation: A, (T, P)=2{AG%(T, p)+KT |n(§0)}+5y2
where:  AGH (T, p°) =G, (T, p°) -G (T°, p°)

taken from Thermodynamical Tables.

The correction o’ matches the origin of the experimental variation
of the O chemical potential and the reference point in our theoretical
estimates ( En,/2).



Energies of metals

Energies of metals
calculated with hybrid functionals
usually are unreliable and bad.

Energies for reference phases of metals can be calculated from
each of considered oxides:

E[M0]-L(E,..,  AH o+ (E.,+ AH2(T?, D))

and then averaged:  Eu :ﬁL > E, [MxOy]
"'M,0,



Formation energies

Formation energies:

y
AEf,MxOy: EMxOy_XEM _E Eoz

3
AE f AFeOs EAFeOs_ EA_ EFe_E Eoz

Formation enthalpies:

AH o= E oy~ XE =5 (E,* AH 5 (T°, D7)

AH ?‘,AFeOsZ EAFeOs_ EA_ EFe_g(EOZ—i_AH ga;(To’ po))



Decomposition conditions

A material is stable = No precipitation of different phases:

Fe metal: Au_ < 0
A metal: Apt_ +3A,uo > AE ¢ areo,
Fe oxides: XAp, +YAUu <AE r.o

A oxide: XA/u Fe (3X_ y)Aluo = XAE f,AFeoa_AE f,A0,



Formation energies

Material Exprl No Fe ECPat Fe All-e at Fe
H Calc., Calc., Calc., Calc., Calc.,
Direct formulation | Direct formulation | Averaged Fe-metal | Direct formulation |Averaged Fe-metal
AE | AHY | AE | AHY | AE | AHY | AR | AHY | AE | AHY

FeO -2.82 -458 | 469 | -289 | 299 | 632 | -642 | -294 | -3.04
Fe,0; -8.56 1155 | -1186 | -8.17 | 847 | -1479 | -15.09 | -8.03 | -8.34
Fes0, -11.62 -16.42 | -16.83 | -11.17 | -1157 | -21.39 | -21.80 | -11.13 |-11.53
Fe;0, (cubic) | -11.62 1590 | -16.31 | -10.82 | -11.23 | -21.00 | -21.41 | -11.26 |-11.67
FeO, - - - - - - - - -
Bi,0; 5.9 | 571 | -6.01
BiFeO; -7 -8.68 | -899 | -6.96 | -726 | -10.30 | -10.60 | -6.89 | -7.20
12,0, -18.59 | -18.28 | -18.59
LaFe0; -7 -13.84 | -14.14 -13.78 | -14.09
13,05 (f) -18.59 | -18.28 | -18.59
LaFeQ; (f) | -277? -13.79 | -14.09 -13.73 | -14.04
Sr0 -6.14 | -6.03 | -6.13
Sr0, 657 | 615 | 6.35
SrFe0; -7 1195 | -12.26 | -10.36 | -10.67 | -13.70 | -14.01 | -10.43 |-10.74
BaO 568 | 571 | 582
Ba0, -6.57 | -6.24 | 644
BaFeO;, -7 1149 | <1179 | 996 | -10.27 | -1322 | -1352 | -10.00 |-10.31




Phase diagram for LaFeO,
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Precipitation of: 1. FeO ; 2. Fe, O, ; 3. Fe;0, ; 4. La,04 ; 5. La metal.
Green region marks the region of stability for LaFeO,
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Phase diagram for BiFeO,
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Precipitation of: 1. FeO ; 2. Fe,0; ; 3. Fe;0, ; 4. Bi,O, ; 5. Bi metal.
Green region marks the region of stability for BiFeO,



Pressure, Log, (p/p,)

-10

-15

-20

-25

Environmental conditions (T&pg,)

allowing existence of BiFeO,
all-electron, B3PW

Temperature, K
500 1000 1500 2000

e



Phase diagram for SrFeO,

log,,(P/p,) T,K
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Precipitation of: 1. FeO ; 2. Fe,0; ; 3. Fe;0, ; 4. 5rO ; 5. 5rO, ;
6. Sr metal.
Green region marks the region of stability for SrFeO,
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Phase diagram for BaFeO,

T, K

log,,(P/p,)
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Precipitation of: 1. FeO ; 2. Fe,0O;; 3. Fe;0, ; 4. BaO ; 5. BaO, ;

6. Ba metal.
There is not a region of stability of stoichiometric BaFeO, !

Vacancies seem to be necessary to stabilize this material.



Conclusions:

e We were to analyze basic stability and production conditions
for synthesis of several perovskite materials using ab initio
calculations.

e Created grounds for future analysis of stability of surfaces,
modeling oxygen adsorption, formation of O vacancies,
mechanism of oxygen reduction reaction and oxygen
incorporation into cathode surface.






Thank you for your

attention!
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