

Stability Analysis of SrFeO3, BaFeO3, BiFeO3, and LaFeO3 perovskites using *ab initio* calculations with B3PW hybrid functional.

E. Heifets^a , E.A. Kotomin^{a,b}

^a Max Planck Institute for Solid State Research, Stuttgart, Germany

^b Institute for Solid State Physics, University of Latvia, Riga, Latvia

Approach

- Yu. A. Mastrikov, et al. , J. Phys. Chem. C, 114, 3017–3027 (2010).
- E. Heifets, E. A. Kotomin, Yu. A. Mastrikov, S. Piskunov, J. Maier, "Thermodynamics of ABO₃-type Perovskite Surfaces" in: *Thermodynamics - Interaction Studies - Solids, Liquids and Gases*, edited by J.C. Moreno, InTech, November, 2011; http://www.intechopen.com/articles/show/title/thermodynamics-of-abo3-type-perovskite-surfaces
- M. Kuklja et al, PCCP (Perspective) 15, 5443 (2013)

Motivation

- We consider a set of materials (SrFeO₃, BaFeO₃, LaFeO₃, BiFeO₃), which are limiting for solid solutions employed as the most presently efficient cathode materials in solid oxide fuel cells (SOFCs): Ba_{0.5}Sr_{0.5}Fe_xCo_{1-x}O₃, La_{0.8}Sr_{0.2}Fe_xCo_{1-x}O₃, and a new recently proposed Bi_{1-y}Sr_yFe_xCo_{1-x}O₃
 (A. Wedig, PhD thesis, MPI for Solid State Research, Stuttgart, Germany, 2013, http://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=8622&la=de).
- What conditions (partial pressure and temperature of oxygen gas) are required to insure existence and stability of a target material with respect to decomposition to simple oxides and metals?
- What are conditions allowing to produce a material?
- How to estimate such conditions from results of ab initio calculations?
- Determine region of chemical potentials of components where considered material exists and there is a sense to analyze surface structures, their stability, formation of defects, and reactions at crystal surfaces.

Computational details

- CRYSTAL09 code: Local Gaussian type basis set
- Stuttgart ECP at Bi, La, Sr, Ba; all-electron and Stuttgart ECP at Fe; all-electron at O.
- Basis sets optimized in forms:
 - s411p411d411 (with ECP at Fe, La),
 - s411p411d411f11 (with ECP at La),
 - s411p411d11 (with ECP at Sr, Ba),
 - s4411p411d411 (with ECP at Bi) ,
 - s86411p6411d411 (all-electron at Fe),
 - s8sp411d11 (all-electron at O).
- Hybrid density functional: B3PW
- 8x8x8 Monkhorst-Pack net

Some restrictions

Important approximation: $G_{solid} \approx E_{solid}$

Usually good, but fails when soft modes are present.

In AFeO₃ (A=Sr, Ba, Bi, La) the chemical potentials are connected by:

$$\mu_A + \mu_{Fe} + \frac{3}{2}\mu_{O2} = G_{AFeO_3} \approx E_{AFeO_3}$$

leaving only two of the chemical potentials as independent variables. We choose : μ_{Fe} and μ_{O2} , which are common for all considered materials.

Deviations of chemical potentials

Deviations of chemical potentials from reference states:

$$\Delta \mu_A = \mu_A - E_A^{bulk}$$

Variations of chemical potentials for atoms A calculated with respect to chemical potential of atom A in metallic phase A metal stable at standard conditions

$$\Delta \mu_o(T, p) = \mu_o(T, p) - \frac{1}{2} E_{o2}$$

Variations of chemical potentials for oxygen atoms are calculated with respect to oxygen atom in O₂ molecule:

Dependence on temperature and pressure

T & p dependencies of μ are usually weak in solids, but strong in gases!

$$\mu_A(T,p)$$
 – neglected;

 $\mu_{O}(T,p)$ defines (T,p) dependence of surface Gibbs free energies.

Ideal gas approximation:
$$\Delta \mu_o(T, p) = \frac{1}{2} \{ \Delta G_{o2}^{gas}(T, p^0) + kT \ln(\frac{p}{p^0}) \} + \delta \mu_o^0$$

where:
$$\Delta G_{o2}^{gas}(T,p^{0}) = G_{o2}^{gas}(T,p^{0}) - G_{o2}^{gas}(T^{0},p^{0})$$

taken from Thermodynamical Tables.

The correction $\delta\mu_0^0$ matches the origin of the experimental variation of the O chemical potential and the reference point in our theoretical estimates ($E_{02}/2$).

Energies of metals

Energies of metals calculated with hybrid functionals usually are unreliable and bad.

Energies for reference phases of metals can be calculated from each of considered oxides:

$$E_{M}[M_{x}O_{y}] = \frac{1}{x} (E_{MxOy} - \Delta H_{f,MxOy}^{0} - \frac{1}{2} (E_{O2} + \Delta H_{O2}^{gas}(T^{0}, p^{0})))$$

and then averaged:
$$E_{\scriptscriptstyle M} = \frac{1}{n_{\scriptscriptstyle M}} \sum_{M_{\scriptscriptstyle X}O_{\scriptscriptstyle Y}} E_{\scriptscriptstyle M}[M_{\scriptscriptstyle X}O_{\scriptscriptstyle Y}]$$

Formation energies

Formation energies:

$$\Delta E_{f,MxOy} = E_{MxOy} - x E_M - \frac{y}{2} E_{O2}$$

$$\Delta E_{f,AFeO3} = E_{AFeO3} - E_A - E_{Fe} - \frac{3}{2} E_{O2}$$

Formation enthalpies:

$$\Delta H_{f,MxOy}^{0} = E_{MxOy} - x E_{M} - \frac{y}{2} (E_{O2} + \Delta H_{O2}^{gas}(T^{0}, p^{0}))$$

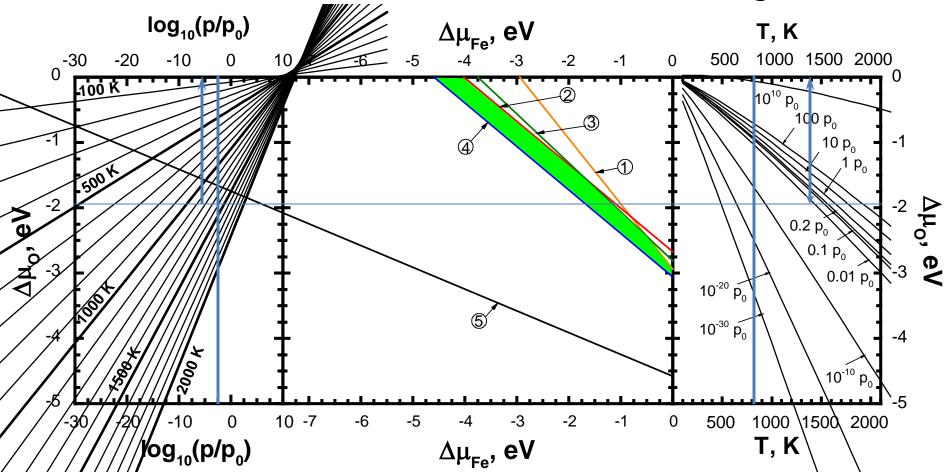
$$\Delta H_{f,AFeO_3}^0 = E_{AFeO_3} - E_A - E_{Fe} - \frac{3}{2} (E_{O_2} + \Delta H_{O_2}^{gas}(T^0, p^0))$$

Decomposition conditions

A material is stable = No precipitation of different phases:

Fe metal:
$$\Delta \mu_{Fe} \leq 0$$

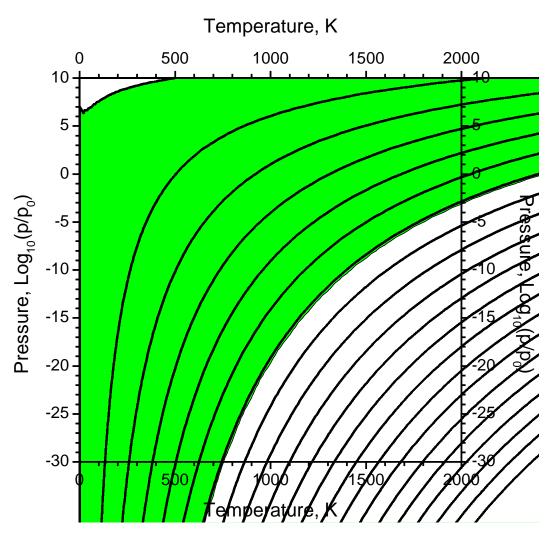
A metal:
$$\Delta \mu_{Fe} + 3\Delta \mu_{o} \ge \Delta E_{f,AFeO_3}$$

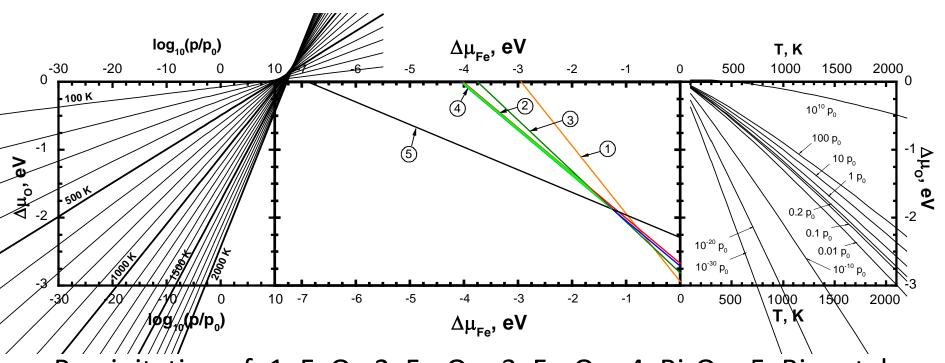

Fe oxides:
$$x\Delta\mu_{Fe} + y\Delta\mu_o \leq \Delta E_{f,Fe_xO_y}$$

A oxide:
$$x\Delta\mu_{Fe} + (3x - y)\Delta\mu_o \ge x\Delta E_{f,AFeO_3} - \Delta E_{f,A_xO_y}$$

Formation energies

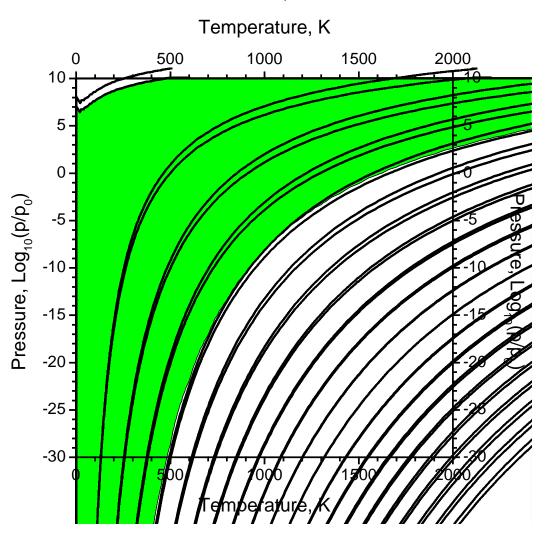
Material	Exprl H ⁰ _f	No Fe		ECP at Fe				All-e at Fe			
		Calc., Direct formulation		Calc.,		Calc.,		Calc.,		Calc.,	
				Direct formulation		Averaged Fe-metal		Direct formulation		Averaged Fe-metal	
		ΔE_{f}	$\Delta\mathrm{H}^0_{\mathrm{f}}$	ΔE_{f}	$\Delta { m H}_{ m f}^0$	ΔE_{f}	$\Delta H_{\rm f}^0$	$\Delta \mathrm{E_f}$	$\Delta { m H}_{ m f}^0$	ΔE_{f}	$\Delta { m H}_{ m f}^0$
FeO	-2.82			-4.58	-4.69	-2.89	-2.99	-6.32	-6.42	-2.94	-3.04
Fe ₂ O ₃	-8.56			-11.55	-11.86	-8.17	-8.47	-14.79	-15.09	-8.03	-8.34
Fe ₃ O ₄	-11.62			-16.42	-16.83	-11.17	-11.57	-21.39	-21.80	-11.13	-11.53
Fe ₃ O ₄ (cubic)	-11.62			-15.90	-16.31	-10.82	-11.23	-21.00	-21.41	-11.26	-11.67
FeO ₂	-			-	-	-	-	-	-	-	-
Bi_2O_3	-5.95	-5.71	-6.01								
BiFeO ₃	-????			-8.68	-8.99	-6.96	-7.26	-10.30	-10.60	-6.89	-7.20
La_2O_3	-18.59	-18.28	-18.59								
LaFeO ₃	-????			1	-	-13.84	-14.14	-	-	-13.78	-14.09
$La_2O_3(f)$	-18.59	-18.28	-18.59								
LaFeO ₃ (f)	-????			-	-	-13.79	-14.09	-	-	-13.73	-14.04
SrO	-6.14	-6.03	-6.13								
SrO_2	-6.57	-6.15	-6.35								
SrFeO ₃	-????			-11.95	-12.26	-10.36	-10.67	-13.70	-14.01	-10.43	-10.74
BaO	-5.68	-5.71	-5.82								
BaO_2	-6.57	-6.24	-6.44								
BaFeO ₃	-????			-11.49	-11.79	-9.96	-10.27	-13.22	-13.52	-10.00	-10.31

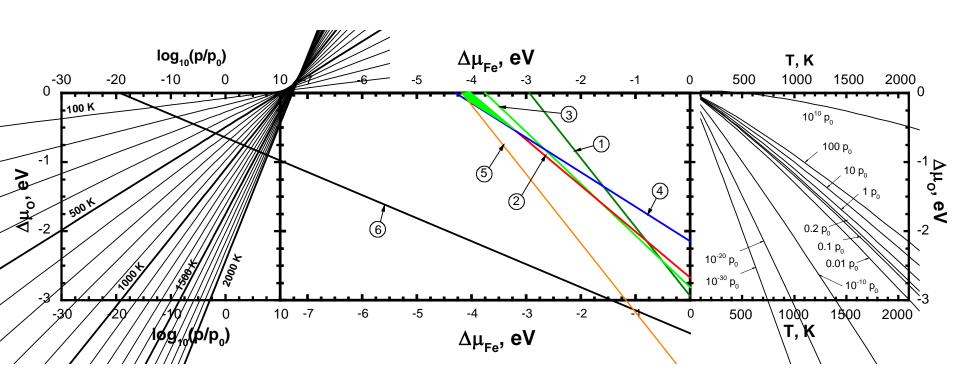

Phase diagram for LaFeO₃


Precipitation of: 1. FeO; 2. Fe_2O_3 ; 3. Fe_3O_4 ; 4. La_2O_3 ; 5. La metal. Green region marks the region of stability for $LaFeO_3$

Environmental conditions (T&p₀₂) allowing existence of LaFeO₃

all-electron, B3PW

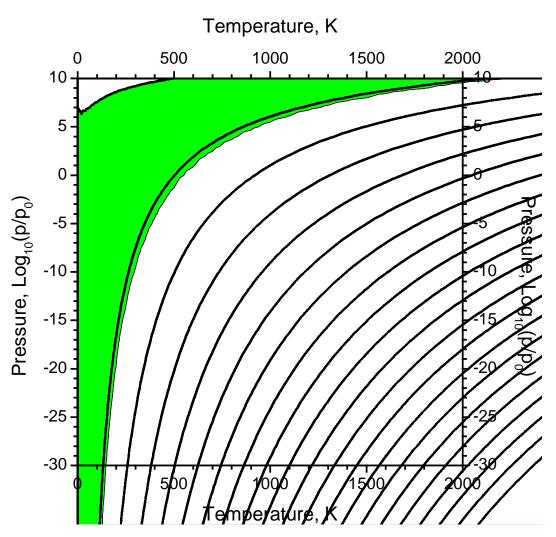

Phase diagram for BiFeO₃


Precipitation of: 1. FeO; 2. Fe_2O_3 ; 3. Fe_3O_4 ; 4. Bi_2O_3 ; 5. Bi metal. Green region marks the region of stability for $BiFeO_3$

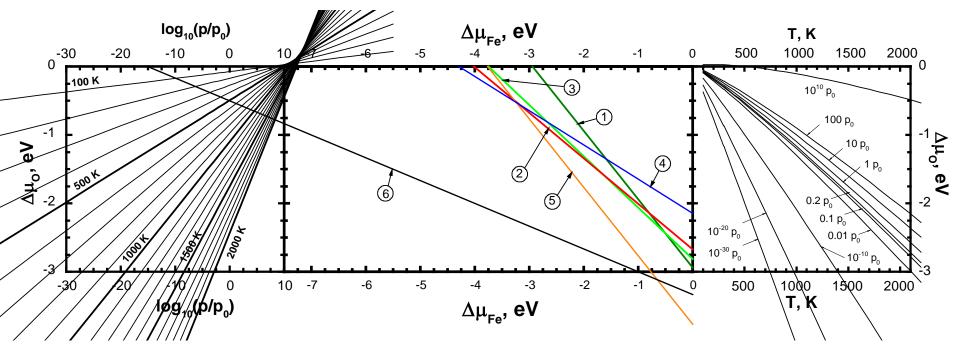
Environmental conditions (T&p₀₂) allowing existence of BiFeO₃

all-electron, B3PW

Phase diagram for SrFeO₃



Precipitation of: 1. FeO; 2. Fe_2O_3 ; 3. Fe_3O_4 ; 4. SrO; 5. SrO_2 ; 6. Sr metal.


Green region marks the region of stability for SrFeO₃

Environmental conditions (T&p₀₂) allowing existence of SrFeO₃

all-electron, B3PW

Phase diagram for BaFeO₃

Precipitation of: 1. FeO; 2. Fe_2O_3 ; 3. Fe_3O_4 ; 4. BaO; 5. BaO₂; 6. Ba metal.

There is not a region of stability of stoichiometric $BaFeO_3$! Vacancies seem to be necessary to stabilize this material.

Conclusions:

- We were to analyze basic stability and production conditions for synthesis of several perovskite materials using ab initio calculations.
- Created grounds for future analysis of stability of surfaces, modeling oxygen adsorption, formation of O vacancies, mechanism of oxygen reduction reaction and oxygen incorporation into cathode surface.

Many thanks due to

- A.A. Bagaturiantz (Photochemistry Center, Moscow)
- E. Kotomin (Max Planck Institute for Solid State Research, Stuttgart, Germany Institute for Solid State Physics, University of Latvia, Riga)
- J.Maier, R. Merkle (Max Planck Institute, Stuttgart)

Thank you for your

attention!