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General problem  

2( ) 4 2g e− −+ →2  cathode reaction: O O
Study and control of possible reaction pathways  
of oxygen reduction and incorporation reaction  

    Improvement of SOFC and permeation membrane performance 
requires better understanding of oxygen reduction reaction 

Exciting and challenging multidisciplinary field: 
-Electrochemistry and materials chemistry, 
- surface science of advanced oxides, 
-, chemical kinetics,  
-large-scale computer simulations  
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Development of new materials 
• Large scale computer simulations of materials  
in close collaboration with state-of-the art 

experiments [Max Planck Institute, Stuttgart]: 
 Combinatorial approach: J.Serra, V.B.Vert, 
ChemSusChem 2, 957 (2009) is time-consuming 
 Limitations of experiments: 
Discrimination of processes (O vacancies 

migration) in the bulk and on surfaces, 
A role of different dopands and impurities 
Identification of adsorbates at low coverages  
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  Goals of theory: 
Atomistic/mechanistic details of oxygen 
reduction (ORR) at SOFC cathode 
surface; 
-- O vacancy formation/migration on 
the surface/bulk; optimisation of 
cathode chemical composition  
    Challenge: what are the rate-
determining reaction stages in oxygen 
reduction reaction  



Joint experimental- theoretical 
study on BSCF-LSCF 

• R.Catlow (ed.) Computational Approaches to 
Energy Materials, Wiley, 2013, Chapter 6.  

• M. Kuklja et al, PCCP (Perspective) 15, 
5443 (2013)  

• R. Merkle et al, JECS 159, B 212 (2012) 
• Yu. Mastrikov et al, PCCP 15, 911 (2013) 
• D. Fuks et al, J. Mater.Chem.A, 1, 14320 

(2013) 
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SOCF perovskites cathode materials comparison 

F. S. Baumann et al., J. Electrochem. Soc. 154 (2007) B931;     J. Fleig et al., Fuel Cells 8 (2008) 330 
                                                                                                   L. Wang et al., J. Electrochem. Soc. 157 (2010) B1802 

(La0.8Sr0.2)0.92 MnO3-δ (La,Sr)(Co,Fe)O3-δ Ba0.5Sr0.5Co0.8Fe0.2O3-δ 
"LSM"                  "LSCF"                       "BSCF" 

increase of VO  
concentration 

..  increase of VO  mobility ..  

A 

B 

O2- 

Both migration 
and formation 
energies  are 
important!! 
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Methods: 1. Solid  
state physics 

Density Functional Theory 
Plane Wave basis set 

Generalised Gradient Approximation (Hubbard U)  

Perdew Wang 91 exchange-correlation functional 

Projector Augmented Wave method 

Davidson algorithm for electronic optimization 

Conjugate Gradient method for structure relaxation 

Nudged Elastic Bands for energy barriers estimation 

Bader charge analysis (Prof. G. Henkelman and co-workers, Universiy of Texas) 

Spin-polarized calculations 
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• 2. Quantum chemical approach  
•  CRYSTAL code  with LCAO basis set  
• (re-optimised Comp Mat Sci. 29, 165 (2004) 
For light atoms (O), all-electron basis set (BS) for  

heavy atoms (Sr, Pb,Ti and Zr), the small-core 
Hay-Wadt pseudopotentials 

• Hybrid HF-DFT functionals  
• hybrid functionals work very good!  

The gap 3.63 eV(indirect); 3.95 eV(direct): 10% 
error 

• a0=3.91  A ( + 0.5% error) 
• Supercell model (up to 320 atoms: 4 x 4 x 4 

extended UC) 
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The most efficient SOFC material: 
Ba(0.5)Sr(0.5)Co(0.75)Fe(0.25)O3-δ 

•   Ba 

Sr 

O 

Co 

Fe 

Bulk and defect properties 
40 atom supercells (4% of oxygen vacancies) and 320 atoms (0.7%) 
Mastrikov et al, En. Env. Sci. 3, 1544 (2010).  
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Role of chemical composition: defect formation 
energies [Kotomin et al, Sol. St. Ionics, 188, 1 (2011)]  
BSCF  
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Composition trend  

•  Vo formation energy increases considerably 
with Fe concentration (1.2  2 eV) [with respect 
to the free O atoms: ½ O2 ], 

    in agreement with expt observation of defect 
concentration increase BSF  BSCF (Gauckler 
et al, PCCP 11, 3090 (2009) 

 
BSCF formation energy much smaller than in  
LSM (2.7 eV) and STO (5.9 eV) 
 
 
 
 



Explanation from DOS analysis 
R. Merkle et al, JECS 159, B 219 (2012)  
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Transition state of O migration 

A*

B**

A'*

B*

Op

Op

Oeq

Oeq

O*
x

y

z
Key factors:  
-Lattice expansion 
-Charge transfer 
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BSCF(001) electron density maps 

a) Equilibrium state for oxygen vacancy;  b) transition state  

Merkle et al, JECS 159, B219 (2012) 
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Vacancy migration energy, Fe0.25 

Co-Vo-Fe Co-Vo-Co  

Co-Vo-Fe 

Co-Vo-Co  
0.42 eV 

0.46 eV 

0.52 eV 0.46 eV 

For comparison: LMO 0.9 eV 
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Vacancy migration in BSC: 
 ground and transition states 

Lattice distortion areas is 6-8 A around the jumping O* ion  
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Vacancy migration energies 
Kotomin, Sol.St.Ionics,188,1(2011);Merkle et al,JECS159,B219 (2012)]  

BSCF  Ba0.5Sr0.5Co1-yFeyO2.875
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Trend  

•  Migration energies much smaller in BSCF 
(~0.5 eV) than in  LMO, LFO,LCO, STO 
(0.8-0.9 eV) 

•  Energy increase with Fe concentration 
•  What are the main factors behind? 
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Migration energy depends on both the saddle point geometry and 
electronic structure (vacancy formation energy) 
Merkle et al, JECS 159 (2012) B 219; Kotomin, SSI 188 (2011) 1 
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Our goal is modelling of all steps of the ORR in order to find limiting one 
Entropy effects important under realistic operational conditions: LSM  

Mastrikov et al, J. Phys. Chem. C 114, 3017 (2010); Wang J.Mat. Res. 27, 2012 



Cubic vs hexagonal? 

Chemical expansion coefficient is close to expt value  
12/12/2014 22 School-conference on Functional materials, 

    



BSCF: cubic vs hexagonal? 

Kukla et al J Phys Chem C 116 (2012) 
12/12/2014 22 School-conference on Functional materials, 
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CONCLUSIONS 
• First-principles  computer modeling could be 

useful tool for understanding „composition-
property“ relation in complex perovskite solid 
solutions (where simple models fail) 

•   especially at surfaces/interfaces (defect 
formation energies and mobilities, charge 
distribution, etc.) and transition states of 
processes 

•  Intuitive conclusions are not always correct, e.g. 
defect formation energies at surfaces and in bulk 
•   Structural stability aspects!! Kuklja et al, J Phys 

Chem C 116, 18605 (2012) 
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• Many thanks due to: 
• R.Evarestov (St Petersburg University) 
• D.Gryaznov, Yu.Mastrikov (University of 

Latvia) 
• M. Kuklja (Maryland University, USA) 
• D. Fuks (Ben Gurion University, Israel)  
• J.Maier, R. Merkle (Max Planck Institute, 

Stuttgart) 
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LSCF: almost no correlation! 
Mastrikov et al, PCCP 15, 911 (2013)  

vacancy formation energy EV / eV
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…and negligible charge transfer 

vacancy formation energy EV / eV
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Variation of oxygen exchange rates for MnO2-  termination  

.  
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Phase diagram (ab initio TD) 

oxygen deficiency δ
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Diffusion in LSCF: contrast to BSCF 
Mastrikov et al, PCCP 15, 911 (2013)  
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 For comparison, EV of BSF, BSC22,24 and orthorhombic LaMnO3  are included (open symbols).  



A role of Sr doping in Vo 
formation energy in La(1-x)SrxFeO3-d 

• Two limiting cases: LaFeO3 (oxidation 
state 3) and SrFeO3 (oxidation state 4) 

•  each Sr (+2) atom brings a hole: Fe+4 
• Each oxygen vacancy Vo kills 2 holes: 

Fe(+3) or even Fe2+ 
• The Fe oxidation state is strongly affecting 

Vo formation energy (nonstoichiometry) 
• The control parameter: d/2 vs x 
12/12/2014 School-conference on Functional 

materials, Moscow  2014  
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Whats does ab initio mean? 

• Two global approaches: HF and DFT 
•  DFT: exchange-correlation functionals 
•  LDA-type (only density) 
•  GGA (also density gradients) 
•  GGA+U (Hubbard U– on-site correlations) 
•  HF-DFT hybrids: semi-empirical or not  
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Example: calculated band gap 
for defect-free ortho-LaFeO3 

• Expt                    2.1 eV 
• LDA                    metal 
• LDA+U               2.3 eV 
• GGA                   0.75 eV 
• GGA+U               2.53 eV 
• HSE (hybrid)       3.6 eV 
PS. LSF is a semiconductor up to 90% Sr. 
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X,% δ,% ΔH Oxidation 
state Fe 

expt 

0 (LF) 12.5 4.26 (GGA) 2.75 5.0  
 

50.0 12.5 3.5 (GGA) 
 

3.25 0.99 

100 (SF) 50 3.28 (GGA) 4.0 0.7 

THE CALCULATED Vo FREE FORMATION ENTHALPY IN La1-xSrxFeO3-δ 

Mastrikov, PCCP 2013 

GGA calcs 
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X,% δ,% ΔH (900 K) Oxidation 
state 

expt 

0 (LF) 12.5 3.99 (4.41) 2.75 5.0  
 

25 12.5    0.69± 0.17 
 (1.1) 

3.00 1.2 

50  12.5 0.01± 0.28 
(0.41) 

3.25 0.99 

THE CALCULATED Vo FREE FORMATION ENTHALPY IN La1-xSrxFeO3-δ 

Carter, Chem Mater 2013 

GGA+U, 900 K  
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X,% δ,% ΔH (1200 K) Oxidation 
state 

expt 

0 (LF) 12.5 4.26 (GGA) 
3.99 (GGA+U) 

2.75 5.0  
 

12.5 12.5 2.2 2.875 3.0 
12.5             
25 

6.25  
 12.5   

0.89 
0.69(GGA+U) 

3.00 1.2 
 

50.0 12.5 0.15 3.25 0.99 
3.5 (GGA) 
-0.01(GGA+U) 

100 (SF) 50 3.28 (GGA) 4.0 0.7 

THE CALCULATED Vo FREE FORMATION ENTHALPY IN La1-xSrxFeO3-δ 

Hybrid calculations give the best agreement with expt but… 
GGA- Mastrikov, PCCP 2013;  GGA+U – Carter, Chem Mater 2013 

Hybrid PBE0 calculations, 1200 K   
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DISPERSION OF FORMATION ENERGIES IS QUITE  LARGE: 

  6 types of Vo vacancies in 12.5% Sr  
 Formation energies are ranged  0.68-1.09 eV 

2 3 4 5 6 7 8 9 10
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e
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 / 
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4 types of Vo for 50% Sr, energy are ranged 0.04-0.27 eV !! 
                            Problem of averaging : kinetic MC 
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         GENERAL  CONSLUSIONS 
 
1.Neither „ab initio“  method is perfect…. 
2.  … but hybrid functional are more reliable 
3.  Choice of a realistic model is non-trivial: 
       inhomogeneous defect-dopant distributions, 
        soft modes/unharmonicity  in perovskites  
       and phase transformations  
4. Charged defects, especially in thin films is 
    another challenge.  
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          Transition state complexity: 
• Simple geometry arguments based on a critical 

ionic (Shannon radii) fail, high Ba ion 
polarizability and the electronic structure are 
important factors. 

•  3 key factors determining migration barrier 
through A-A‘-B triangle are: 

• Displacements of A-type ions from jumping O*   
• Displacement (tilting) of a whole BO4O* 
•  Covalency of B-O* chemical bond  
•  clear correlation between oxygen migration and 

vacancy formation energies 
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             Thank you for your          
   attention! 
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• 2. Quantum chemical approach  
•  CRYSTAL 2014 code  with LCAO basis set  
• (re-optimised Comp Mat Sci. 29, 165 (2004) 
For light atoms (O), all-electron basis set (BS) for  

heavy atoms (Sr, Pb,Ti and Zr), the small-core 
pseudopotentials 

• Hybrid HF-DFT functionals work very good for 
band gaps 

•  Bond populations and atomic charge analysis  
• Well suited for slabs  
• Ghost basis set on vacant sites  
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Methods: 1. Solid  
state physics 

Density Functional Theory 
Plane Wave basis set 

Generalised Gradient Approximation (Hubbard U)  

GGA, GGA+U, PBE0 hybrid exchange-correlation functional 

Projector Augmented Wave method 

Conjugate Gradient method for structure relaxation 

Nudged Elastic Bands for energy barriers estimation 

Bader charge analysis  

Spin-polarized calculations 
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Factors determining O diffusion? 
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