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Полимерные нанокомпозиты на основе 
полититаноксида:  

 перспективные материалы для создания солнечных батарей нового 
поколения 

 каталитические системы очистки в биотехнологии и воздействия на 
раковые клетки в медицине 

 введение в полититаноксидные композиты наночастиц золота и серебра 
приводит к усилению их фотоактивности в реакциях органического 
синтеза, в том числе тонкого, например: 

 
 
 

  
 
 

Cтруктура и термодинамические свойства нанокомпозитов, а также 
механизм и возможности влияния их структурных параметров на 

каталитическую активность не изучены 
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Цели и задачи: 
 Исследовать структуру, энергии образования и ИК спектры 

перспективных нанокомпозитов на основе TiO2/гидроксиэтилметакрилат 
(ГЭМА) с наночастицами золота 

 Выявить наиболее распространенные структурные элементы в 
синтезированных нанокомпозитов путем сравнения экспериментальных 
ИК спектров с теоретическими спектрами оптимизированных структур 

 Установить центры наиболее выгодной координации атомов золота в 
смешанных композитах на основе Au/TiO2

 

 Определить электронную структуру, энергии возбуждения, особенности 
переноса заряда при УФ облучении, обуславливающие каталитическую 
способность нанокомпозитов 
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Методы исследования 
 Квантово-химический расчет структуры, энергий,  физико-

химических  свойств и энергий возбуждения предполагаемых 
структурных элементов нанокомпозитов Au/TiO2/ГЭМА 

 Теория функционала плотности:  
 B3LYP/6-31G(d,p) для композитов TiO2/ГЭМА 
 B3LYP/LANL08 для атомов Au в композитах Au/TiO2/ГЭМА 

 Полная оптимизация геометрии 
 Расчет колебательных частот и термодинамических 

параметров 
 Расчеты энергий возбуждения и сил осцилляторов методом 

TD-B3LYP/LANL08/6-31G(d,p) 
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Реакция ∆rE, кДж 
моль-1 

∆rE+ZPE, 
кДж моль-1 

∆rH, 
кДж моль-1 

∆rG, кДж 
моль-1 
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Реакции образования TiO2- нанокомпозитов, их структура и ТД параметры 
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Реакции образования TiO2- нанокомпозитов, их структура и ТД параметры 
Реакция ∆rE, кДж 

моль-1 
∆rE+ZPE, 

кДж моль-1 
∆rH, 

кДж моль-1 
∆rG, кДж 

моль-1 
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№ Реакция ∆rE, кДж 
моль-1 

∆rE+ZPE, 
кДж моль-1 

∆rH, 
кДж моль-1 

∆rG, кДж 
моль-1 
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Реакции образования TiO2- нанокомпозитов, их структура и ТД параметры 
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Сравнение экспериментального ИК спектра TiO2-композита с 
теоретическими спектрами оптимизированных структур 
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Выбор метода для расчетов нанокомпозитов Au/TiO2 

Полуэмпирические  
методы: PM6, PM7 
DFT 
 PBE0  
 BLYP  
 B3LYP 
Базис/псевдопотенциал 
 LANL2DZ 
 LANL08 
 CRENBS 
 SVP 
(для сходных систем дополнительно  
тестировали ONIOM  BLYP/6-31G*/PM6) 
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Критерии выбора метода – соответствие структуры и отн.энергии  расчетам 
более высокого уровня [Catalysis Today 36 (1997) 153-166 , Chem. Rev. 2004, 104, 
293-346] + время расчета. 

Найденная оптимальная расчетная схема 
 - DFT B3LYP/LANL08/6-31G(d,p) 



координация на внешней  
стороне кластера на кислорода связт Ti-O-Ti 

∆E = -13.7 кДж/моль 
 

координация на внутренней стороне 
кластера на водородах 

∆E = -22.2 кДж/моль 

Оптимизированные структуры и энергии координации   
атома золота в Au/TiO2-композитах (B3LYP/LANL08/6-31G(d,p)) 
(∆E – энергия координации атома золота) 
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Координация на кислородах 
связи  Ti-O-Ti  
E = -70.3 кДж/моль 
 

Координация на кислородах 
карбонильных групп 
∆E = -81.5 кДж/моль 
 

Координация на кислородах 
связи  Ti-O-Ti  
E = -19.3 кДж/моль 
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12 TiO2/ГЭМА            Au      TiO2/ГЭМА/Au7 

∆E=4.92eV ∆E=0eV ∆E=3.72eV 

Электронный спектр модели нанокомпозита с атомарным Au –  
TDDFT(B3LYP)/LANL08/6-31G(d,p) 

Эксперимент 
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∆E=4.92eV ∆E=1.00eV ∆E=1.58eV 

TiO2/ГЭМА          Au        TiO2/ГЭМА/Au7 

Электронный спектр модели нанокомпозита с кубической стркутрой TiO2/ГЭМА  
и кластерами Au7 – TDDFT(B3LYP)/LANL08/6-31G(d,p) 

Эксперимент 
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∆E=4.82eV ∆E=1.20eV ∆E=1eV 

TiO2/ГЭМА                      Au             TiO2/ГЭМА/Au7 

Эксперимент 

Электронный спектр модели нанокомпозита с двойными мостиками 
TiO2/ГЭМА и кластерами Au7  – TDDFT(B3LYP)/LANL08/6-31G(d,p) 
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HOMO LUMO+3 

Возможный механизм фотоактивности нанокомпозита -возбуждение 
электрона с HOMO на LUMO+3 при ЭМ-облучении (λ=696 нм)  

(расчет TD-B3LYP/LANL08/6-31G(d,p)) 

hv  (E=1.78 эВ) 

Возможно, это анионное 
состояние TiO2 является 
катализатором реакции 

окисления хинонов 



Результаты и выводы: 
1. Изучены структуры и энергии образования нанокомпозитов  на 

основе TiO2/ГЭМА.  Рассчитаны ИК спектры наиболее  выгодных 
структур.  

2. Наличие циклических мостиков TiO2Ti в композитах приводит к 
появлению широкой интенсивной полосы в области 650 см-1, которая 
смещается в область 600-550 см-1 при увеличении их числа в 
молекуле.Тетраэдрические структуры дают интенсивные двойные 
полосы с максимумами 750 и 850 см-1.. Линейные  цепи Ti-O-Ti  
приводят к появлению  относительно  низкоинтенсивных  полос в 
области 850 см-1. 

3. Наиболее выгодными центрами координации атомов золота  
являются карбонильные связи, атомы кислорода связи  Ti-O-Ti  и 
атомы водорода ГЭМА.  

4. Изучено влияние различных структурных мотивов на спектры 
электронного возбуждения нанокомпозитов и на природу 
возбужденных состояний при данной энергии возбуждения. 

5. Полученные результаты позволяют интерпретировать 
экспериментальные данные, устанавливать наличие характерных 
структурных элементов нанокомпозита, контролировать и влиять на 
фотокаталитическую активность материала.  
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Спасибо за внимание 
 
 

nastya_ls91@mail.ru 
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