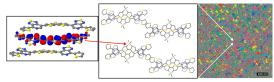
Towards rational design of organic solar cells: How to control the structure of a bulk material

Andriy Zhugayevych

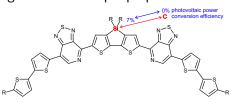
Skolkovo Institute of Science and Technology

Skolkovo Institute of Science and Technology

Acknowledgments:


Sergei Tretiak (LANL) Guillermo Bazan (UCSB) Jessica Coughlin (UCSB) Thomas van der Poll (UCSB)

Funding:

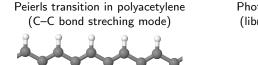

This work is done mainly at Los Alamos National Lab within CEEM EFRC project

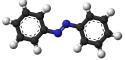
Outline

• Overview: Modeling of materials for organic electronics

Motivation: Small changes in chemical composition →
→ large changes in macroscopic properties

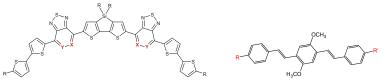
• Results: Understanding and controling the above effect


What is organic electronics?


- Cost effective solution
- Unlimited possibilities of nanoscale molecular engineering
- Ease of production and recycling
- Light weight and flexibility

Why π -conjugated molecules are special?

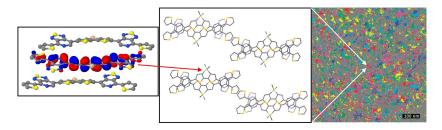
Strong mode-specific electron-phonon coupling


Photoizomerization of azobenzene (librations of non-rigid dihedrals)

also polaron formation <u>picture</u>, vibronic progression in spectra

How to utilize it?

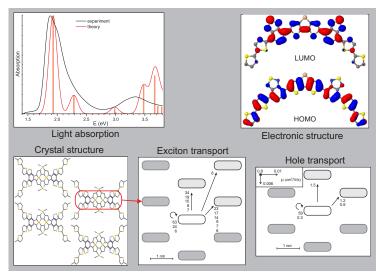
- Change structure \implies tune electronic properties
- Affect electronic system ⇒ change structure



How to describe it?

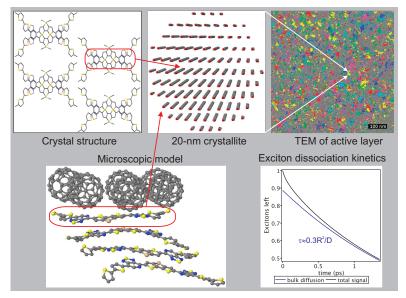
- Adiabatic calculations and non-adiabatic molecular dynamics
- Holstein-Peierls Hamiltonian and mean-field polaron approach

First-principles multiscale modeling: bird's eye view


- Combine different approaches on different scales
- Control the accuracy (errors accumulate through the scales)

- Density functional theory on few-molecules scale
- Model Hamiltonian on intermolecular scale
- Molecular mechanics + kinetic equation on mesoscale
- Continuum models on larger scales (diffusion + electrostatics)

Calculating single-crystal characteristics



 $\begin{array}{l} \mbox{Exciton diffusion length} \sim 100 \mbox{ nm, hole mobility} \sim 1 \mbox{ cm}^2/V \cdot s \\ \hline \mbox{Single-crystal properties of the given molecule are perfect for photovoltaics} \\ \mbox{A.Z., O. Postupna, R. C. Bakus II, G. C. Welch, G. C. Bazan, S. Tretiak, J. Phys. Chem. C 117, 4920 (2013)} \\ \end{array}$

Modeling exciton dissociation

In absence of traps exciton dissociation proceeds in picoseconds

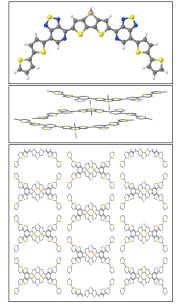
A.Z., K. Velizhanin, S. Tretiak, in preparation

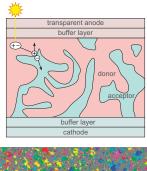
molecular structure PCE* notes 7% reference molecule similar but downgraded 6% properties low J_{SC} & FF 0.2% no crystallites 10-fold increase 7% in hole mobility

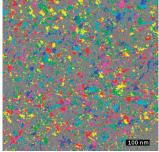
How small changes influence macro-properties: experiment

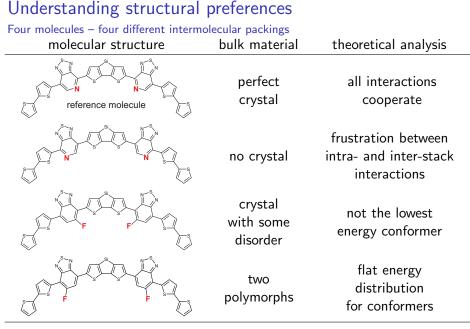
* PCE = photovoltaic Power Conversion Efficiency

** Single-molecule electronic properties are nearly the same for all 4 molecules

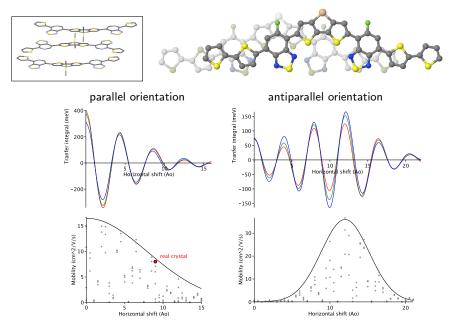

Structure: multiple scales from nm to μ m


Small-molecule bulk-heterojunction organic solar cells


Conformers 30 meV/dihedral


Intra-stack binding 2 eV/molecule

Inter-stack binding 0.4 eV/molecule



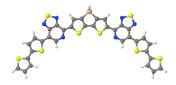
T. van der Poll, A.Z. et al. J. Phys. Chem. Lett. 5, 2700 (2014)

Dependence of transfer integral on intermolecular geometry

How to control the structure of bulk material?

Not changing single-molecule electronic properties

- Isovalent substitutions
- Aliphatic side chains
- Processing: solvent, additives etc.

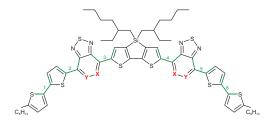

		OPV	mc-Si
Energy balance limit, max 50% for $E_g = 1.1 \text{eV}$		45%	50%
Recombination, heterojunction losses, eV_{oc}/E_g	\times	0.5	0.6
Quantum efficiency, $J_{sc}/J_{sc}^{max}(E_g)$	\times	0.5	0.9
Fill Factor, max $JV/J_{sc}V_{oc}$	×	0.6	0.9
Power conversion efficiency	=	7%	25%

How to shape a molecule

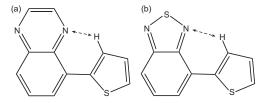
Step 1: Why do we need it

- Stronger π -conjugation
- Tighter intermolecular packing
- Less structural defects

0-30-03-0-03⁻03-0-00-03-00-03-0-0-0

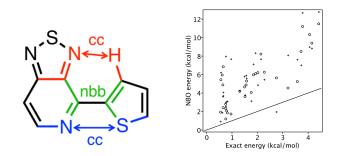


• Increase mobility



How to shape a molecule

Step 2: Understanding intramolecular interactions



There is a lot of controversial statements about atomic-wise interactions

How to shape a molecule

Step 3: Developing a simplified description of intramolecular interactions

The interplay of the three interaction components

- Near-bridge bond interaction (nbb)
- Steric repulsion between contact atoms (cc)
- Electrostatics (controllable by environment)

can "lock" the dihedral or enforce nonplanar geometry.

J. Coughlin, A.Z. et al. J. Phys. Chem. C 118, 15610 (2014)

Conclusions

- Among the most important challenges in rational design of organic semiconductors is ability to control the structure of bulk material as well as predict it theoretically
- To control intermolecular packing without influencing single-molecule properties we can apply isovalent substitutions, modify aliphatic side chains, and change processing conditions (solvent, additives etc.)
- To control molecular shape we are developing a simplified description of intramolecular interactions to use a building-blocks approach

Open positions: postdoc and PhD students are welcome, see details at http://faculty.skoltech.ru/positions