Стабильные сайты связывания атомов в кристаллах инертного газа M@Rg

Озеров Г.К.

12 сентября 2018 г.

Предварительные замечания

- Матричная изоляция отдельных атомов:
 - составляет важный блок спектроскопических экспериментов, дополняющих газофазные методики,
 - предоставляет удобный класс модельных систем для исследования свойств точечных дефектов.
- ② Аккомодация атомов в кристалле инертного газа [Rg] отвечает определенным конформациям ближайшего окружения сайтам захвата.
- Геометрии сайтов могут быть определены экспериментальными средствами только в ограниченном числе случаев.
- Молекулярное моделирование структуры и свойств данных систем является необходимым для корректной интерпретации эксперимента.

Задача

• <u>Постановка</u>: отображение параметров силового поля \mathscr{B} системы внедрения M@Rg на многообразие геометрий ближайшего окружения примесного центра \mathcal{Z} с минимальной энергией:

$$M + [Rg] \rightarrow [M@Rg]_{-N} + NRg + \Delta E(N)$$
$$\Delta E(N) = E^{[M@Rg]_{-N}} - E^{[Rg]} + NE^{Rg}$$

Ограничения:

- ight
 angle равновесный кристалл $[\mathrm{Rg}]$ с ГЦК решеткой
- ▶ нейтральные атомы в S состоянии
- Средства:
 - lacktriangle выбор простого и адекватного модельного потенциала $U_{\mathscr{B}}$
 - разумный выбор сетки параметров потенциала
 - ightharpoonup поиск глобального минимума $U_{\mathscr{B}}$ в конфигурационном пространстве (кластерное приближение)
 - ightharpoonup анализ стабильности по N, поиск и идентификация стабильных сайтов наименьшей энергии
- ullet Результат: карты стабильных структурных типов $\mathcal{B} o \mathcal{Z}$ и значений $N[\mathcal{B}].$

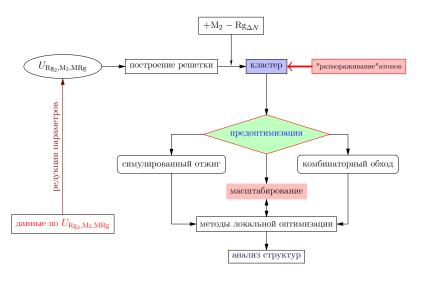
Специфика подхода

- Редукция потенциала. Для двупараметрических парных потенциалов силовое поле задается всего двумя параметрами $U_{\mathscr{B}} \to U_{\epsilon,\rho}$: энергией диссоциации ϵ и равновесным расстоянием ρ молекулы MRg: $U\left[\epsilon_{\mathrm{Rg}}, \rho_{\mathrm{Rg}}, \epsilon, \rho; \left(\boldsymbol{r}_{a}^{\mathrm{Rg}}\right)_{a}, \boldsymbol{r}^{\mathrm{M}}\right] = \epsilon_{0} U\left[\epsilon_{\mathrm{Rg}}/\epsilon_{0}, \rho_{\mathrm{Rg}}/\rho_{0}, \epsilon/\epsilon_{0}, \rho/\rho_{0}; \left(\boldsymbol{r}_{a}^{\mathrm{Rg}}/\rho_{0}\right)_{a}, \boldsymbol{r}^{\mathrm{M}}/\rho_{0}\right].$ \Longrightarrow результаты являются общими для всех инертных газоы с ГЦК решеткой, и моделирование ограничено матрицей Ar .
- В качестве парного потенциала выбран потенциал Леннарда-Джонса:

$$u^{\mathrm{LJ}}(r) = \epsilon \left[\left(\frac{\rho}{r} \right)^{12} - 2 \left(\frac{\rho}{r} \right)^{6} \right].$$

- В глобальной оптимизации использовался симулированный отжиг и комбинаторный поиск, с которых стартовали градиентные методы.
- При классификации структур применялись различные межструктурные расстояния и метод кластеризации полной связи.

Схема расчета



Параметры модели

- ① В качестве инертного газа был выбран Rg = Ar с параметрами потенциала $\epsilon_{Rg} = 100$ см $^{-1}$ и $\rho_{Rg} = 3.76$ Å, Значение ϵ менялось с 10 до 1000 см $^{-1}$ как $\epsilon = 10 \times 1.01^n$ см $^{-1}$, а величина ρ пробегала диапазон от 1.9 до 5.5Å с шагом 0.16Å.
- ② Параметр решетки a оптимизировался минимизацией энергии атомизации и составил 5.17Å, что незначительно отличается от значений, полученных с потенциалами более высокого качества.
- ① Стартовый радиус подвижной центральной области кластера был зафиксирован на 2a, в соответствии с чем радиус остального сферического фрагмента определялся из энергетики взаимодействия с поверхностными атомами и в зависимости от (ϵ, ρ) составлял $5\dots 7a$.
- Масштабирование подвижной области проводилось таким образом, чтобы на конечной стадии только периферийные атомы вблизи поверхности на 1/6 начального радиуса фрагмента оставались замороженными.
- **⑤** Число удаленных атомов центрального региона варьировалось в пределах $N=0,\ldots,15$.

Анализ структур

- ① При каждых (ϵ, ρ) структуры с минимальными $\Delta E(N)$, отвечающие выпуклой оболочке $(N, \Delta E(N))$, рассматривались как стабильные, что определяет характеристики (например, $N[\epsilon, \rho]$) стабильных структур минимальной энергии.
- Для идентификации структур использовались радиальные распределения (RDF) атомов матрицы

$$\varrho(r) = \begin{cases} \frac{1}{4\pi a^2} \varrho_0(r) & r < a, \\ \frac{1}{4\pi r^2} \varrho_0(r) & r \ge a \end{cases} \quad \varrho_0(r) = \frac{1}{s\sqrt{\pi}} \sum_{i \in \text{Rg}} e^{-(r - |\mathbf{r}_{\text{M}} - \mathbf{r}_i|)^2/s^2}$$

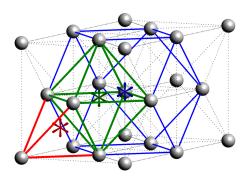
как функции r/a с s=0.1a, для которых можно ввести "расстояние"

$$\|\varrho_a - \varrho_b\|^2 = \int_0^\infty [\varrho_a(r) - \varrho_b(r)]^2 dr.$$

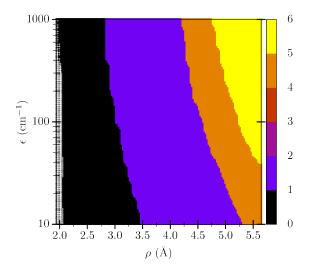
При сравнении структур применялись " L^2 " и лексикографическое расстояния между сортированными массивами длин связей.

Анализ RDF

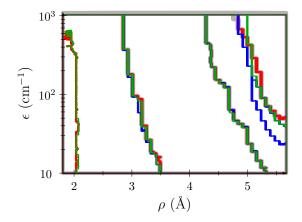
RDF могут использоваться для выяснения характера расположения атома относительно кристалла. Для этого достаточно применить МНК к асимптотикам целевой и эталонных RDF. В качестве последних здесь применялись RDF тетраэдрической (T), октаэдрической (O) и кубоктаэдрической (C) полостей [Rg]:



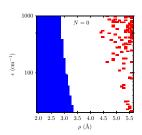
Распределение $\overline{N[\epsilon, \rho]}$

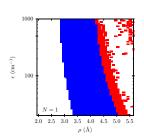


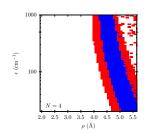
Наложение карт типов

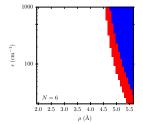


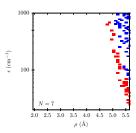
Области стабильности различных N





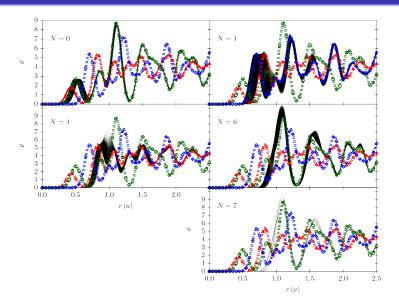




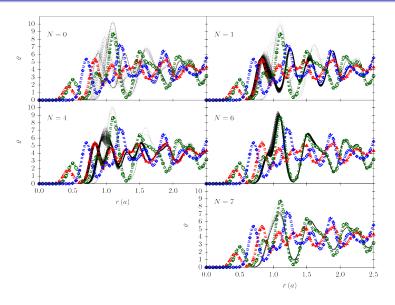


области стабильности и "метастабильности" N

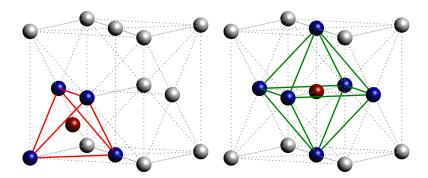
RDF сайтов с наименьшей энергией



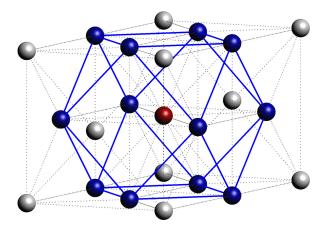
RDF остальных стабильных сайтов

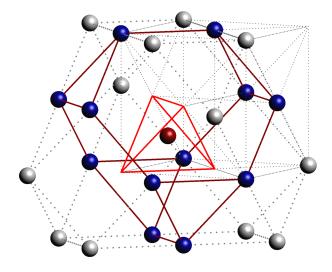


$\overline{\mathsf{A}\mathsf{T}\mathsf{o}\mathsf{m}}$ в полости. N=0

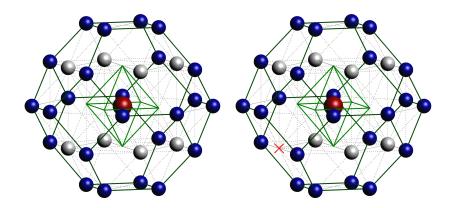


Сайт замещения. N=1





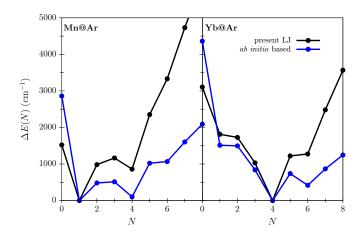
Октаэдрическая вакансия. N=6,7



Сравнение стабильностей некоторых атомов в матрице ${\rm Ar}$

атом	ρ, Å	ϵ , cm $^{-1}$	карты стабильностей	ab initio расчет
Н	3.59	33	N=1. C	N = 1. C
Mn	4.52	76	N = 1, C; $N = 4$, T	N = 1. C: $N = 4$. T
Na	4.99	42	N = 1, C; $N = 4$, T	N = 1, C; $N = 4$, T; $N = 6$, O
Yb	5.03	69	N = 4, T; $N = 6$, O; $N = 1$, C	N = 4, T; $N = 6$, O; $N = 1$, C
Eu	5.22	66	N = 4, T; $N = 6$, O	N = 4, T; $N = 6$, H; $N = 1$, C
Ba	5.58	64	N=6, O; $N=4$, T	N=6, O; $N=4$, T; $N=1$, C

Сопоставление зависимостей энергии аккомодации



Основные результаты

- Сформулирован и реализован эффективный метод поиска глобального минимума энергии точечного дефекта в кристалле.
- Получены распределения областей стабильности чисел удаленных атомов матрицы и установлено, исчерпываются ли структуры внедрения вариантами, следующими из простого кристаллографического рассмотрения.
- Показано, что карты мотивов связывания дают возможность:
 - (a) теоретического моделирования без предварительной глобальной оптимизации
 - (b) делать предположения об устойчивости атомных сайтов.

При этом несмотря на допущения относительно вида потенциалов взаимодействия и пренебрежения энтропийными вкладами в анализе стабильности, результаты модели полезны для качественной интерпретации спектров матрично-изолированных атомов.