Lev L. Levkov, Nikolay M. Surin, Oleg V. Borshchev, Yaroslava O. Titova, Nikita O. Dubinets, Evgeniya A. Svidchenko, Polina A. Shaposhnik, Askold A. Trul, Akmal Z. Umarov, Denis V. Anokhin, Martin Rosenthal, Dimitri A. Ivanov, Victor V. Ivanov and Sergey A. Ponomarenko, Three Isomeric Dioctyl Derivatives of 2,7-Dithienyl[1]benzo-thieno[3,2-b][1]benzothiophene: Synthesis, Optical, Thermal, and Semiconductor Properties, Materials, 2025, 18(4), 743

Three Isomeric Dioctyl Derivatives of 2,7-Dithienyl[1]benzo-thieno[3,2-b][1]benzothiophene: Synthesis, Optical, Thermal, and Semiconductor Properties

By Lev L. Levkov, Nikolay M. Surin, Oleg V. Borshchev, Yaroslava O. Titova, Nikita O. Dubinets, Evgeniya A. Svidchenko, Polina A. Shaposhnik, Askold A. Trul, Akmal Z. Umarov, Denis V. Anokhin, Martin Rosenthal, Dimitri A. Ivanov, Victor V. Ivanov and Sergey A. Ponomarenko

Organic semiconductor materials are interesting due to their application in various organic electronics devices. [1]benzothieno[3,2-b][1]benzothiophene (BTBT) is a widely used building block for the creation of such materials. In this work, three novel solution-processable regioisomeric derivatives of BTBT—2,7-bis(3-octylthiophene-2-yl)BTBT (1), 2,7-bis(4-octylthiophene-2-yl)BTBT (2), and 2,7-bis(5-octylthiophene-2-yl)BTBT (3)—were synthesized and investigated. Their optoelectronic properties were characterized experimentally by ultraviolet–visible and fluorescence spectroscopy, time-resolved fluorimetry, and cyclic voltammetry and studied theoretically by Time-Dependent Density Functional Theory calculations. Their thermal properties were investigated by a thermogravimetric analysis, differential scanning calorimetry, polarizing optical microscopy, and in situ small-/wide-angle X-ray scattering measurements. It was shown that the introduction of alkyl substituents at different positions (3, 4, or 5) of thiophene moieties attached to a BTBT fragment significantly influences the optoelectronic properties, thermal stability, and phase behavior of the materials. Thin films of each compound were obtained by drop-casting, spin-coating and doctor blade techniques and used as active layers for organic field-effect transistors. All the OFETs exhibited p-channel characteristics under ambient conditions, while compound 3 showed the best electrical performance with a charge carrier mobility up to 1.1 cm2·V−1s−1 and current on/off ratio above 107.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *